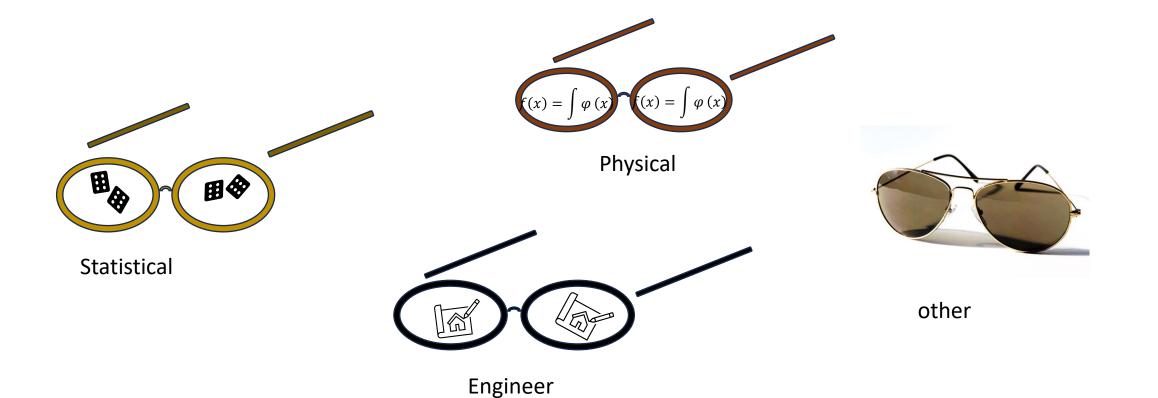


Sub-daily extreme precipitation trends: new insights from combining radar data and convection permitting climate simulations

Alrun Jasper-Tönnies¹, Jaya Kelvin¹, Thomas Einfalt¹, Christian Hübner², Manfred Schütze²


¹hydro & meteo GmbH

²IFAK Institut für Automation und Kommunikation e. V.

Starting remark

It can be helpful to look at a research question through different lenses:

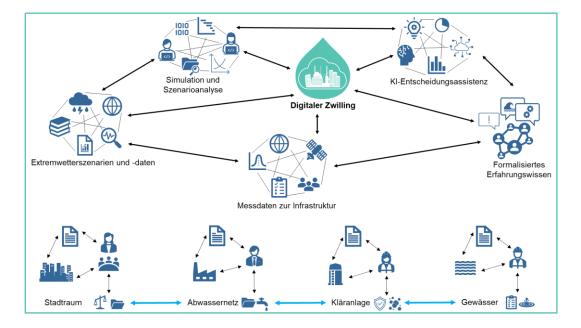
Project ZwillE – short overview

ZwillE is a BMBF funded joint project with 6 project partners.

Study area: City Hanover in Niedersachsen, Germany

Study aim: Development of a **digital twin** for the city (Stadtentwässerung Hannover). Build up a platform which allows for an **integrated view** of the catchments, the water bodies and the drainage system with sewer and waste water treatment plants.

Applications:


- 1) Current state of the system
- 2) Short-term measures for managing water extreme events
- 3) Measures for long-term adaptation of the drainage system

Funded by:

Observation Data basis - Radar

Available Radar data: 2001-today

- From the C-Band Radar Hanover (DWD)
- Corrected and adjusted using the software SCOUT (hydro&meteo) and data from rain gauge stations from DWD and SEH (Stadtentwässerung Hannover)

DX polar, 1 km x 1°, 5 min



Since 2001

BUFR polar, 250 m x 1°, 5 min

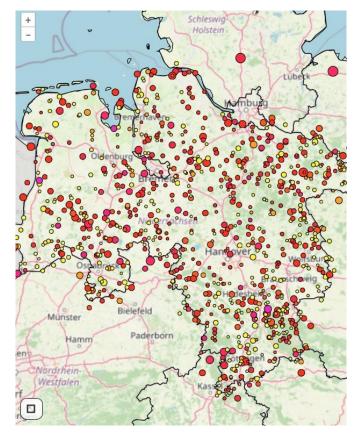
Since 2018

31.05.2018 06:30:00 -01.06.2018 06:30:00

Observed trends of extreme precipitation

What is the observed trend of extreme sub-daily precipitation?

Event-based statistics of extreme precipitation events using the CatRaRE dataset based on RadKLIM (DWD, Lengfeld et al., 2021)

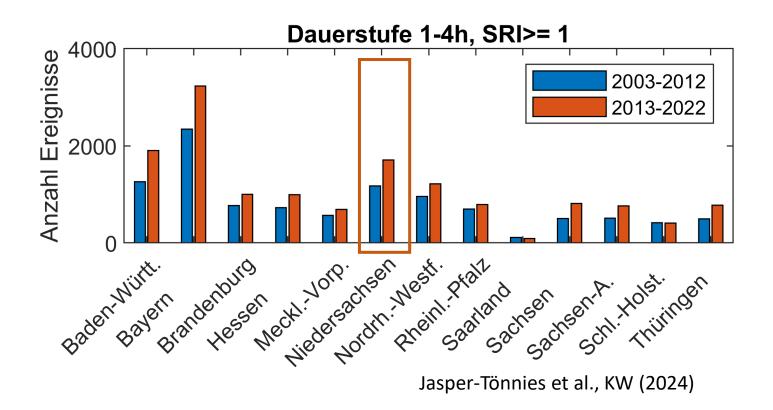

LAWA-Starkregenportal:

- Intersection of CatRaRE event shapes with German Länder shapes
- Filter and visualisation options

Selected event duration: 60 min – 4 hours:

- → Number of events in Niedersachsen:
- 1) 2003-2012: 688 events
- 2) 2013-2022: 947 events

Relative change: + 38 %


Heavy Rain events from 2013-2022 in Niedersachsen, duration 1-4 h. Source: LAWA-Starkregenportal, <u>starkregenportal.de</u>

Observed trends of extreme precipitation

How robust is this signal compared to other parts of Germany?

Niedersachsen: Relative change: + 38 %

• We find **similar increases** in other parts of Germany:

List of uncertainties:

• Measurement uncertainties

- Relative short observation period – impact of special weather situations
- Decadal variability

hydro & meteo

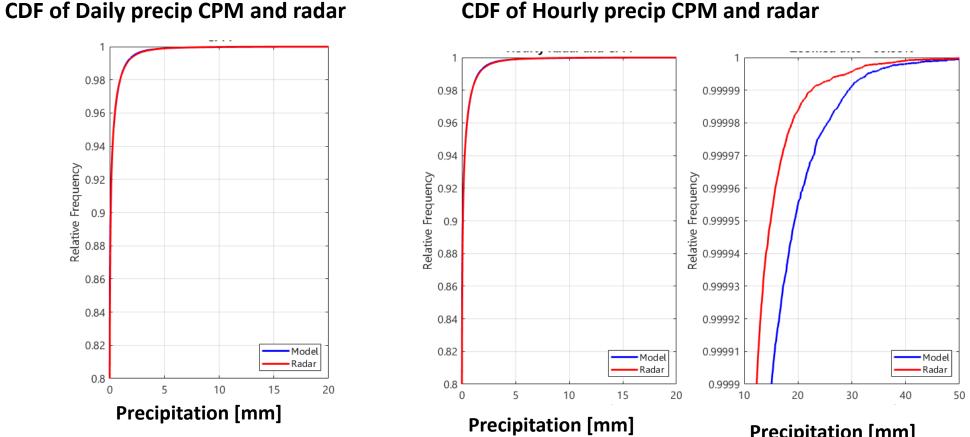
Future trends of extreme precipitation

What is the future trend of extreme sub-daily precipitation on a sub-catchment scale?

Standard approach: Ensemble of nested simulations GCM – RCM (- CPM) using different future scenarios (e.g. EURO-CORDEX/ ReKliES, RCP2.6, RCP8.5)

Convection permitting models (CPM)

- provide output at the scale of interest (~3km, 1h)
- are computationally very expensive and the number is limited
- \rightarrow Limited representation of scenario, model and parameterisation uncertainties.


Evaluation of a CPM ensemble: Ban et al., *Climate Dynamics* 57(2021) List of uncertainties:

- Scenario uncertainties
- GCM uncertainties
- Decadal variability
- RCM uncertainties
- parametrisations of the subgrid processes
- Model biases

Comparison CPM – observation (Radar)

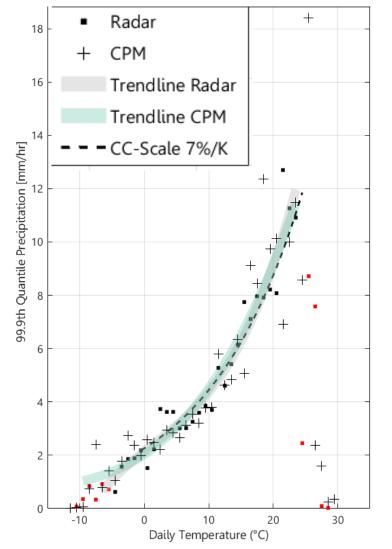
CDF of Hourly precip CPM and radar

Precipitation [mm] **Zoomed into > 99,99%**

CDFs of Daily and Hourly precipitation sums in the CPM and Radar observations in the period 2001-2018

Physical Mechanisms – CC-Scaling

Clausius-Clapeyron equation


about the water holding capacity of air in dependence of temperature:

Increasing at: +7%/K

 Relation can be found in observations:

Precipitation: Radar Temperature: DWD weather station 2001-2018, Hanover

99.9% quantile of hourly precip against Daily Mean Temperature

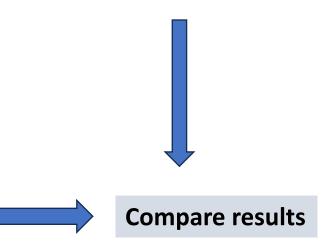
- Relation can be found in simulations
- Here: convection permitting model (CPM)
- Period: 2001-2018, Hanover

Study set-up / validation approach

Use the CPM for validation of a statistical downscaling method

Study set-up:

Choose one GCM as the global climate path: MIROC5 (Watanabe et al., 2011)


```
COSMO-CLM-MIROC5 (Rockel et al., 2008)
EURO-CORDEX/REKLIES (EUR-11)
Resolution: 12,5 km, 1 day
("RCM")
```

→ Statistical downscaling

Simple approach (best-prog method + resampling) using **20 years of radar data** with daily precipitation and temperature as predictors **Predictand:**

Precipitation with resolution 2-3 km, 1 hour

MIROC5-CCLM-CPS (Rybka et al., 2022) Resolution: 3 km, 1 hour ("CPM")

Validation of the statistical downscaling: trend

What is the simulated future trend of sub-daily extreme precipitation in Hanover? Change of extreme Quantiles of hourly precipitation for 2071-2100 (RCP8.5) relative to 2001-2018:

CPM

(MIROC5-CPM, Rybka et al., 2020, DWD)

Q99.9 hourly precip: +28%

Q99.97 hourly precip: +36%

- Hourly extreme quantiles not well represented
- Sub-grid parameterisations may affect trend

Statistical downscaling

(based on daily data from COSMO-CLM-MIROC5, ReKliES, EUR-11)

Q99.9 hourly precip: +12%

Q99.97 hourly precip: +11%

- Assumptions based on past observations
- New extremes not available
- Variance is not fully explained by the predictors

Validation of the statistical downscaling: trend

What is the simulated future trend of sub-daily extreme precipitation in Hanover? Change of extreme Quantiles of hourly precipitation for 2071-2100 (RCP8.5) relative to 2001-2018:

CPM

(MIROC5-CPM, Rybka et al., 2020, DWD)

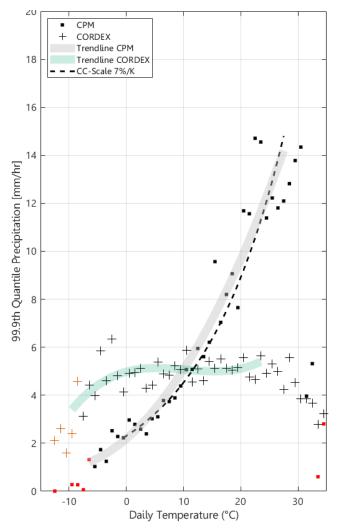
Q99.9 hourly precip: **+28%**

Q99.97 hourly precip: **+36%**

- Hourly extreme quantiles not well represented
- Sub-grid parameterisations may affect trend

(based on daily data from COSMO-CLM-MIROC5, ReKliES, EUR-11)

Q99.9 hourly precip: +12%

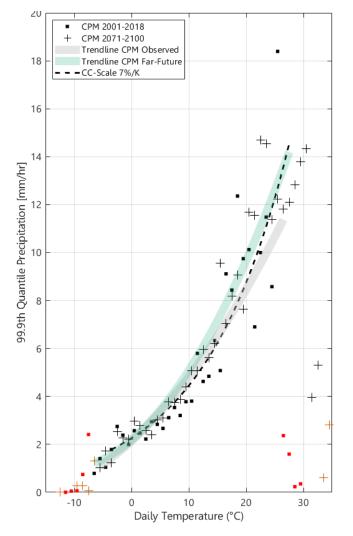

Q99.97 hourly precip: +11%

- Assumptions based on past observations
 - New extremes not available
 - Variance is not fully explained by the predictors

Validation of the statistical downscaling: CC-relation

99.9% quantile of hourly precip against Daily Mean Temperature

The simple statistical downscaling approach did not reproduce the observed CC-relation.


This statistical approach is not appropriate to estimate the future trend!

CC-scaling Plot for the period: 2071-2100 (RCP8.5) (green) from RCM derived and statistically downscaled data in comparison to the CPM (grey).

Testing assumptions of the statistical downscaling

99.9% quantile of hourly precip against Daily Mean Temperature

Basic assumption of statistical downscaling of climate model output:

The relation between the larger and the finer scale (here: daily temperature vs. 99.9th percentile of hourly precipitation) does not change in a changing climate.

This assumption does not seem to hold for sub-daily precipitation in the far future!

CC-scaling Plot for the period: 2071-2100 (RCP8.5) (green) in comparison to the period 2001-2018 (grey). Next steps:

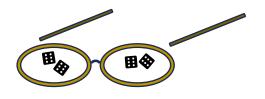
Produce input for the Hanover sewer model SIMBA: high resolution time-series for 83 sub-catchments

- \rightarrow Adapt the statistical downscaling:
- Test other predictor combinations and a larger observation data set for the statistical downscaling in order to better match the observed CC-relation and the CPM trend.

Practical approach:

 Post-process the results produced by the statistical downscaling using the CPM derived trend as a constraint

12th ERAD, 13.09.2024, Alrun Jasper-Tönnies Conclusions


Convection Permitting Models

- reproduce radar observed statistical distributions of daily and (mostly) sub-daily precipitation
- are a major step forward in estimating future sub-daily trends
- With additional radar based statistical downscaling (trends costrained by CPM-derived trends) we can produce high resolution input to the SIMBA model for the Hanover sewer system: time-series for 83 sub-catchments
- Several GCM-CPM runs are available to build a small ensemble

But: Convection Permitting Models remain computationally expensive and the number is limited

 \rightarrow Limited representation of scenario, model and parameterisation uncertainties.

Convection Permitting Model output is available for the far future, providing:

- a dataset with data available both on a high-resolution sub-daily and lower-resolution daily scale
- a dataset with new extremes on a sub-daily scale.
 - \rightarrow This data can be used to:
 - derive/ adapt the statistical relations between the scales needed for an improved statistical downscaling of the far future period
 - overcome a major shortcoming of the statistical donwscaling

- Other pairs of GCM-RCM and GCM-CPM simulations could be used to validate the results.
- If the results are satisfying: statistically downscaling of the complete GCM-RCM ensemble to cover the spread and scenario uncertainties.

Thank you for your attention!

© Quelle: Wolfgang Maxwitat

Alrun Jasper-Tönnies jasper-toennies@hydrometeo.de

References:

Ban et al., Climate Dynamics 57(2021), DOI: 10.1007/s00382-021-05708-w

Jasper-Tönnies et al., KW Korrespondenz Wasserwirtschaft, 2024 (17), DOI: 10.3243/kwe2024.03.003

Lengfeld et al., 2021, Meteorologische Zeitschrift Vol. 30 (2021), DOI: 10.1127/metz/2021/1088

Rockel et al., 2008, Meteorol. Z. 17, DOI: 10.1127/0941-2948/2008/0309.

Rybka et al., 2022, Meteorologische Zeitschrift Vol. 32 No. 2 (2023), DOI: <u>10.1127/metz/2022/1147</u>

Watanabe et al., 2011, Geosci. Model Develop. 4, DOI: 10.5194/gmd-4-845-2011

Acknowledgement:

The Federal Ministry of Education and Research (BMBF) is funding the project "ZwillE – Digitaler Zwilling zum KIunterstützten Management von Wasser-Extremereignissen im urbanen Raum" within the "Wasser-Extremereignisse (WaX)" funding measure as part of the federal research program on water "Wasser: N". Wasser: N contributes to the BMBF "Research for Sustainability' (FONA) Strategy".